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A computer-controlled four-roll mill is used to examine two transient modes of 
deformation of a liquid drop: elongation in a steady flow and interfacial-tension- 
driven motion which occurs after the flow is stopped abruptly. For modest extensions, 
drop breakup does not occur with the flow on, but may occur following cessation of 
the flow as a result of deterministic motions associated with internal pressure 
gradients established by capillary forces. These relaxation and breakup phenomena 
depend on the initial drop shape and the relative viscosities of the two fluids. 
Capillary-wave instabilities at the fluid-fluid interface are observed only for highly 
elongated drops. This study is a natural extension of G. I. Taylor’s original studies 
of the deformation and burst of droplets in well-defined flow fields. 

1. Introduction 
Basic research on the deformation and breakup of a liquid drop due to the motion 

of an immiscible, viscous suspending fluid dates back to  the pioneering work of 
G. I. Taylor (1932, 1934, 1964). The problem is of considerable fundamental interest 
in fluid mechanics as an example of a time-dependent free-boundary problem and 
as a prototype for flow-induced deformation of a variety of flexible bodies such as 
red blood cells, macromolecules, floes, elastic particles, etc. It is also closely related 
to dispersion processes in commercial blenders and mechanical emulsifiers. As a 
consequence, many investigations have appeared since Taylor’s original papers. Two 
excellent reviews by Acrivos (1983) and Rallison (1984) provide a comprehensive 
description of this more recent work. 

The remarkable feature of Taylor’s early investigations is that  he actually 
discovered most of the interesting phenomena that are characteristic of drop 
deformation and breakup in steady flows. However, to stop a t  this point in a 
description of Taylor’s contribution to the drop-deformation and breakup problem 
does not do justice to the importance of his work. To experimentally simulate a 
planar extensional flow, Taylor invented the four-roll mill, which has subsequently 
been used in many laboratories for studies of drop breakup, extension of macro- 
molecules, floe stability, and many related topics. To provide a theoretical description 
of small deformations of the drop, Taylor used the asymptotic method of domain 
perturbations. Later, to describe the motion of the highly elongated shapes charac- 
teristic of low-viscosity drops, Taylor pioneered slender-body theory for low- 
Reynolds-number flow. 

Taylor’s (1934) experimental observations in steady simple shear and planar 

t Current address: Bentley Systems, Inc., 180 Gordon Dr., Lionville, PA 19353, USA. 
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extensional flows show clearly that drops at  first deform under the combined action 
of viscous and pressure forces through a series of steady shapes as the shear rate is 
increased, until finally a point of maximum steady deformation is reached beyond 
which further increases in the shear rate usually lead to a transient, steadily 
increasing extension of the drop with time. As Taylor was first to note, however, 
there is a fundamental difference between simple shear flow and two-dimensional 
extensional flow. In particular, a drop with a viscosity that exceeds the suspending 
fluid viscosity by more than approximately a factor of 4 does not become stretched 
in simple shear flow, but rather achieves a steady, slightly deformed shape for all 
large shear rates. Thus, at low Reynolds number, it is impossible to break a 
sufficiently viscous drop in steady, simple shear flow regardless how large the shear 
rate becomes. In two-dimensional extensional flow, on the other hand, drops of any 
viscosity ratio extend continuously so long as the strain rate exceeds a certain critical 
value. This fundamental distinction, first discovered by Taylor, between simple shear 
flow and planar extensional flow is of considerable practical importance despite the 
restriction to low Reynolds numbers, simply because the drops that we attempt to 
break in blending devices are frequently characterized by low Reynolds numbers. 

In spite of the major accomplishments of Taylor and subsequent researchers over 
the intervening 50 years, however, many important qualitative questions remain to 
be answered: 

( a )  What is the role of flow type in the deformation and breakup processes ? In 
particular, what is the nature of the transition between simple shear and two- 
dimensional extensional flows ? 

( b )  What are the mechanisms for breakup and how do they depend on the 
parameters of the system, including the degree of deformation of the drop 1 

( c )  What is the role of flow transients in the deformation and breakup processes? 
(d )  What is the role of rheology if one or both fluids are non-Newtonian ? 
The research reported here and in two earlier publications from our laboratory 

(Bentley & Leal 1986a, b )  represent the first steps in a series of experimental (and 
theoretical) studies that are designed to  address these and related questions. These 
experiments are based upon a computer-controlled version of Taylor’s four-roll mill 
designed to maintain the drop at  the stagnation point of the flow, with minimal 
disturbance, for either steady or unsteady flows. The complete spectrum of linear, 
two-dimensional flows can be generated from pure rotation to two-dimensional 
straining flow (the latter being the only motion studied by Taylor with the four-roll 
mill). A complete description of this device was published in our earlier paper, 
Bentley & Leal (1986a). 

In our initial investigation, Bentley & Leal (1986b), we studied steady-state shape 
and orientation for drops in five different types of steady two-dimensional flows, from 
pure extension (‘hyperbolic flow’) to a flow with only slightly more strain than 
vorticity and for drops with viscosity ranging from lop3 to lo2 that of the suspending 
fluid. Critical conditions for breakup were also determined for all these cases, the 
critical conditions being identified as the Capillary number (dimensionless shear rate) 
beyond which the drop undergoes continuous extension. The Bentley-Leal study of 
drop deformation in steady flows was a natural outgrowth of preceding research in 
the field and concentrated mainly on the measurement and prediction of steady 
shapes and of conditions where steady shapes could not be achieved in steady flows. 

The present paper represents a first step toward generalization of preceding studies 
to investigate transient effects on the deformation and breakup of a liquid drop. In 
particular, we examine the continuous elongation of a liquid drop for steady 
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FIGURE 1. Streamlines for the linear flow u = P x ,  f given by (1); a 3 0. 

two-dimensional flows a t  capillary numbers (shear rates) that are equal to or slightly 
above the critical value for ' breakup ', and, the subsequent interfacial-tension-driven 
relaxation of the extended drop when the flow is stopped abruptly. Relatively few 
previous studies have examined any aspect of time-dependent behaviour in the 
deformation and breakup process. Capillary-wave instability on infinite, stationary 
fluid cylinders has been considered by Tomotika (1935), Rumscheidt & Mason (1961), 
Lee & Flumerfelt (1981) and Lee, Yu & Flumerfelt (1981), while Tomotika (1936) 
and Mikami, Cox & Mason (1975) have studied capillary-wave growth on extending 
fluid threads of infinite length. Of course, extended drops differ from an infinite 
cylinder in the sense that they are always closed a t  their ends, and thus do not 
represent a possible equilibrium state. We shall see that the final drop length plays 
a critical role in both the extension of the drop and its relaxation when the flow is 
removed, with the result that  capillary-wave instability plays a role only if the 
droplets are extremely elongated. The closest experimental study to that reported 
here is due to Grace (1971), who reports data on the elongation necessary to achieve 
rupture in the relaxation process, the resulting drop-size distribution, and some 
interesting effects due to abrupt changes in shear rate for simple shear and planar 
extensional flows. Torza, Cox & Mason (1972) also investigated experimentally some 
effects of the time history of the flow field. From a theoretical point of view, three 
types of analysis have been used to study transient phenomena. Hinch & Acrivos 
(1980) and Hinch (1980) used slender-body theory to investigate the behaviour of 
low-viscosity drops, and found that the equilibrium shapes corresponding to 
subcritical shear rates were accessible only if the shear rate was increased slowly. It 
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FIGURE 2. Scalar measures of deformation and orientation. 

was also shown that the existence of a waist in the initial shape always led to 
breakup. Nearly spherical drops of arbitrary viscosity ratio were studied via domain 
perturbation techniques by Cox (1969) and Rallison (1980), and shown to attain 
steady shapes in an oscillatory manner in flows with vorticity. Finally, Rallison 81 
Acrivos (1978) and Rallison (1981) have used the boundary-integral method to 
investigate some aspects of the time evolution of the drop shape and observed that 
the critical shear rate and mode of drop burst depended on the history of the flow. 

2. Problem statement 
We consider a Newtonian-liquid droplet, with undeformed radius a,  density p, and 

viscosity f i ,  suspended in a second immiscible Newtonian fluid of density p and 
viscosity p which is undergoing a linear, two-dimensional flow a t  infinity. The 
undisturbed velocity field is u = T - x ,  where the velocity gradient tensor r is 

with a being a 'flow-type' parameter and G the fluid shear rate. An approximation 
to  this flow field is generated near the centre of a four-roll mill. The flow-type 
parameter a provides a measure of the ratio of the rate of strain relative to  the 
vorticity in the undisturbed flow and varies between a = + 1.0, a hyperbolic (or 
extensional) flow, and a = - 1.0, a purely rotational flow. Simple shear flow corres- 
ponds to  a = 0. We shall be interested in flows with a > 0, the so-called 'strong' 
flows, as they are capable of producing the greatest deformation for a given value 
of G. The streamlines for several of these flows are illustrated in figure 1 .  The 
fluid-fluid interface is characterized by a constant interfacial tension u. 

Provided that the Reynolds number pGa2/,u is sufficiently small, the behaviour of 
a neutrally buoyant drop in a steady flow can be characterized by three dimensionless 
parameters: the viscosity ratio A = fi/,u, the capillary number C = ,uGa/u (which 
provides a measure of viscous forces causing deformation relative to interfacial-tension 
forces which resist deformation), and the flow-type parameter a. The orientation of 
the drop relative to the principal axis of strain (in our device, this is the x-axis for 
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all flow types) is denoted by 13 and is sketched in figure 2. Two scalar deformation 
measures have been used in drop-deformation studies and are also shown in figure 
2. These are: D = L- B / (L+ B) ,  where L and B are the half-length and half-breadth 
of the drop, respectively, which is appropriate for mildly deformed drops; and Lla ,  
the elongation ratio, which is appropriate for highly extended drops. As discussed 
by Bentley & Leal (1986b), the orientation angle is important because the effectiveness 
of a particular flow in deforming the drop depends on the orientation of the drop 
relative to the principal axis of strain of r. This same concept will arise later when 
we consider the transient elongation of drops in steady flows characterized by 
different flow types. 

For sufficiently small values of the capillary number C a steady drop shape exists 
in a steady two-dimensional flow for all a and A. Indeed, for each flow type a += 1 ,  
there exists a viscosity ratio above which the drop attains a steady shape for any 
value of the capillary number (provided, of course, that  the Reynolds number 
remains small). I n  such cases, drop burst is impossible. I n  the majority of cases, 
though, there exists a critical capillary number above which a steady drop shape no 
longer exists and viscous forces cause the drop to continually elongate. This transient 
deformation is examined in the present study. If a t  some time during this elongation 
process the flow is stopped, the problem becomes that of an extended liquid drop 
suspended in a fluid that is otherwise quiescent. Because the extended drop is not 
an equilibrium shape, an evolutionary, interfacial-tension-driven flow occurs and 
the drop rapidly changes shape, either returning to a sphere or breaking into smaller 
drops via a complicated, time-dependent motion. The entire dynamics of this 
interfacial-tension-driven flow are characterized by the viscosity ratio and the initial 
drop shape, and this includes the determination of whether the drop breaks or returns 
to its native spherical shape. Interfacial tension determines the velocity scale for the 
drop's motion, and hence the timescale of the relaxation or breakup process, but has 
no role in determining the qualitative characteristics of the phenomena. In  the 
present study we examine this evolution of extended drops as a function of both 
viscosity ratio and initial elongation ratio Lla  a t  the time flow is stopped. One 
objective is to determine the elongation ratio that is necessary if the drop is to break, 
including any dependence of this critical condition on the viscosity ratio or the flow 
type during the elongation process (the latter presumably affecting the initial 
elongated shape). 

3. The experiment 
The experiments reported in this paper were performed using the computer- 

controlled four-roll mill described in Bentley & Leal ( 1 9 8 6 ~ ) .  Here, we discuss only 
those features of the device that are important to the present work. 

The drop position in the device is sensed using a digital television camera. A 
mini-computer uses the digital representation of the drop to determine the location 
of its centre of mass. A control scheme which models the response of the flow to 
changes in roller speed and the drop's response to changes in the flow field then 
regulates the speeds of the rollers in order to  maintain the drop a t  the centre of the 
device, under the constraint that  the shear rate G and flow type a either remain 
constant or change in a proscribed manner with time. Typically, about five control 
cycles occur each second. 

Since the drop position is controlled via small but finite modifications of the flow 
several times per second, an obvious question is whether these changes introduce any 
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FIGURE 3. Eight second time-exposure photographs of drops in the four-roll mill. The sharpness 
of the fluid-fluid interface demonstrates the ability of the control scheme to maintain the drop a t  
the device centre with minimal disturbances ( a )  h = 1.3, a = 1.0, G = 0.11 s-l. (b) h = 1.3, a = 0.2, 
G = 0.165 s-'. 

discernible change in the shape of the drop. A qualitative indication of the success 
of the control scheme is illustrated by the sharp fluid-fluid interfaces shown in the 
time-exposure photographs of figure 3. Photograph 3 ( a )  is an 8 s exposure (approx- 
imately 40 control cycles) of a drop a t  G = 0.11 s-l, a = 1.0, while 3 ( b )  is an 8 s 
exposure with G = 0.165 s-l, a = 0.2. The different light intensity at the centre is due 
the lense effect of the drop. Previous four-roll mills, including Taylor's original 
device, could be controlled only by manual manipulation of the roller speeds. This 
resulted in strong, time-dependent changes in the flow, and restricted the studies to 
steady, hyperbolic flow, a = 1.0, only. The present apparatus dramatically increases 
the reliability and utility of the four-roll mill by reducing the flow disturbances to 
a minimal level and by allowing the full range of both steady and time-dependent 
two-dimensional flows to be performed. 

I n  our previous studies, the deformation and deformation history of the drop was 
followed via 35 mm photographs. However, this procedure is demanding of operator 
time and is limited in the range of time-dependent motions that can be followed (the 
minimum time increment between successive photographs for a Canon A-1 motor- 
driven camera is approximately 0.8 s). Furthermore, i t  is expensive with regard to 
film and developing costs. Thus, one change introduced for the present study is the 
development of a technique for direct analysis of the existing digital image of the 
drop to determine the degree of drop deformation. 

3.1. Data ana,lysis using digital image processing 
Digital image-processing techniques have found a wide variety of uses in experimental 
fluid mechanics. However, so far as we are aware, the only utilization similar to that 
described below is due to Girault, Schiffrin & Smith (1982, 1984) who used a video 
digitizing technique to determine the shapes of stationary pendant drops for the 
measurement of interfacial tension. 
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FIGURE 4. Typical digital images of the transient deformation of highly elongated droplets in a 
steady flow a t  the critical capillary number. 35 mm photographs are shown for comparison. 

In  our experiment, the sensor of the digital television camera effectively consists 
of a 224 x 112 grid of discrete picture elements (pixels), the light intensity a t  each 
pixel being represented by an  eight-bit digital signal. This grey level information is 
thresholded by hardware to  a one-bit (or two-state) signal, effectively replacing the 
entire grey level image by a black drop in a white background. The thresholded 
information is sent via direct memory access to  the computer’s memory and used in 
the control scheme to rapidly determine the position of the centre of mass of the drop. 
In our previous studies, this was the sole use of the thresholded image. I n  the present 
work, however, the thresholded digital image is saved in a data file at the command 
of the operator, and then analysed, following completion of the experiment, to 
determine the characteristic scalar measure of the degree of drop deformation; i.e. 
D or Lla. During rapid deformation, many images could be saved, if desired. 

The resolution of the digital television camera is 110.2 pixels/cm in the r-direction 
and 72.5 pixels/cm in the y-direction (directions are shown in figures 1 and 2). The 
undeformed radius of the drop was typically 0.1 cm, but during the elongation and 
breakup experiments the drops often attained half-lengths of approximately 1 cm 
with very narrow waists, approximately 0.02 cm in diameter. The narrow cylindrical 
waist was often very difficult for the digital camera to  resolve. 

Two digital images of deforming drops are shown in figure 4, along with corres- 
ponding still photographs. These images are typical of the transient deformation that 
is the topic of interest of this paper. The basic features of the shape are captured 
by the digital image. Following detarmination of the centre of mass, we calculated 
Lla by determining the distance separating the farthest edge bit from the centre of 
mass. Edge bits were located by scanning the image, from the outside toward the 
inside, until we found the first bit on each scanning line such that two out of three 
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FIGURE 5.  Comparison of L / a  calculated from 35 mm photographs and L / a  calculated by analysing 
digital images. The solid line denotes (Lla),, mm = ( L / u ) , , , ~ ~ ~ , ;  A. A = 0.01, a = 1.0; 0, h = 0.09, 
a = 0.4;*, h = 12.2, a = 1.0. 

successive bits were ‘dark’. Such a screening process was necessary to be sure that 
extraneous dark bits due to ‘noise’ in the digital image were not inadvertently 
identified as edge bits. A representative comparison of data from 35mm still 
photographs with the results of analysing the digital image in this manner is shown 
in figure 5. Results are presented for three different viscosity ratios and two different 
flow types for a series of experiments on the transient elongation of a liquid droplet, 
described in further detail in $3.2. Agreement is typically to within 5 % t .  With this 
level of accuracy, the digital image-analysis procedure was adopted and used 
extensively for determination of the degree of drop deformation in the present 
investigation of transient effects. 

3.2. Procedure 
The experiments reported here are a straightforward extension of the drop deform- 
ation studies described by Bentley & Leal (1986b). With a drop maintained at the 
centre of the four-roll mill, the shear rate is increased by small increments of about 
0.01 s-l until a steady drop shape no longer exists. The corresponding shear rate is 
termed the critical shear rate G,, or, in dimensionless terms, the critical capillary 
number C,. At this point the drop elongates continuously in the local flow field. When 
a certain elongation ratio L l a  is reached, the flow is stopped. Depending on the 

t It may be noted that there is a small, but definite systematic increase in the data from still 
photographs relative to the digital-image data for low-viscosity-ratio drops. This difference is a 
consequence of a small time lag in manually triggering the still picture relative to the moment when 
a digital image is obtained. This time lag is accentuated for low-viscosity-ratio drops because they 
stretch more rapidly. 
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viscosity ratio and the degree of elongation, the drop then either breaks up into a 
series of ‘daughter’ drops or else relaxes back to a spherical shape through a rather 
complex motion. 

The objective of the experiments in which the flow is stopped is to approximate 
an abrupt step change in the suspending fluid from a steady motion to a state of rest. 
In order to achieve this, a necessary condition is that the characteristic timescale for 
the viscous response of the velocity field in the four-roll mill to changes in roller speed 
is small compared with any timescale of drop deformation. The present study was 
performed using Pale-4 Oil (and oxidized castor oil available from Cas Chem, Inc., 
Bayonne, N.J.) as the suspending fluid, with viscosity of approximately 50 P. The 
characteristic viscous response time for changes in the four-roll mill flow, lE/v, is thus 
0.3 s (here I, is the characteristic apparatus lengthscale, and v is the kinematic 
viscosity of the suspending fluid). On the other hand, the characteristic timescale for 
interfacial-tension-driven changes in drop shape is pa (1  +h) /c  and this is usually 
large compared with the viscous response time for the flow. In  general, then, when 
the rollers are stopped, drop motion is driven strictly by interfacial tension and is 
a consequence of the non-equilibrium shape of the extended drop in an otherwise 
quiescent fluid. 

All of the experiments were recorded on video tape for qualitative viewing and the 
results were quantified by analysing digital images of the deformed drop or by 
occasionally taking 35 mm still photographs. Experiments were performed for ten 
viscosity ratios between 0.01 and 12 and for five flow types a = 1 .O, 0.8,0.6, 0.4 and 
0.2. The drop fluids were a series of Dow Corning Silicone oils. The properties of these 
fluid systems were tabulated by Bentley & Leal (19863). The undeformed-drop radius 
varied between 0.05 cm and 0.1 cm and, in all cases, was small enough that the 
elongated drop remained in the central region of the device where the flow field is 
given approximately by (1) .  The Reynolds number pGa2/p was about for these 
experiments. 

4. Results 
In this section we present the results of our experimental study of the elongation 

of liquid drops in two-dimensional strong flows, and the subsequent relaxation 
and/or breakup of the drops after the flow is stopped. First, we report qualitative 
observations of drop deformation and breakup, including the effects of varying both 
flow type and viscosity ratio. Secondly, we present quantitative results for the 
drop-elongation ratio L/a  as a function of time, as well as the critical elongation ratio 
necessary to ensure breakup for this special flow history. Our results will be compared 
with two existing theoretical analyses : (i) an extending, infinite fluid cylinder in an 
axisymmetric extensional flow and (ii) capillary-wave growth on an infinite, stationary 
liquid cyclinder in a quiescent fluid. In  the final section, we present a qualitative 
explanation for the dynamics of the observed relaxation and breakup phenomena 
and we describe briefly a new solution for the motion of an elongated drop in a 
quiescent fluid generated using the boundary-integral technique which supports this 
qualitative explanation. 

4.1. Qualitative behaviour 
We begin by describing the elongation and subsequent interfacial-tension-driven 
breakup in qualitative terms, using the results for the case h = 2.4, a = 1.0 (figure 
6a,  b )  to illustrate the phenomena. The first photograph in series ( a )  is the undeformed 
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FIGURE 6. ( a )  Elongation of a liquid droplet, h = 2.4, a = 1 .O,  in a steady flow at the critical capillary 
number, i = G, ak, G, = 0.132 s-l. ( b )  Relaxation and breakup after the flow is stopped abruptly - 
'end pinching'. The time is measured from the instant the flow ceases and t = Gc a%. 

drop, and the remaining photos exhibit the transient deformation of the drop while 
the flow is maintained a t  the critical capillary number, C, = 0.117. The times listed 
to the right of the photographs (and all other photographs shown in this paper) are 
non-dimensionalized with respect to G, &(t = G, d t )  and i t  is clear from the values 
listed that the initial elongation process is very slow. This is, in fact, true for all 
viscosity ratios, though the rate of elongation in this initial stage of transient 
deformation is observed to decrease as the viscosity ratio increases. During this slow 
initial elongation process, the sides of the drop are gradually flattened until the drop 
eventually develops a waist. Once the waist develops, the rate of drop elongation 
increases, as seen in the last three photos in series ( a ) ,  eventually approaching the 
rate of elongation of a fluid line element in the linear flow. During this period, the 
central section of the drop decreases rapidly in radius. Meanwhile, the ends retain 
their bulbous shape and appear to translate with only a small change in volume. 
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While the flow is on, there is no evidence of capillary waves on the central cylindrical 
section. This was true for all the systems examined and will be discussed more fully 
in 54.5. Furthermore, we found no case where the extending drop in a steady flow 
fractures a t  the middle while the flow was on, though it  should be noted that the total 
elongation in our experiments was limited by the finite dimensions of the four-roll 
mill. 

The sequence of photos, figure 6 ( b ) ,  shows the drop behaviour after the flow is 
stopped. The times shown are measured relative to the instant that  the flow is turned 
off and, for consistency, have also been non-dimensionalized with respect to G, a;. 
The most interesting and important observation is that  the breakup process, 
illustrated by the series of photos, is entirely different from the capillary-wave 
instability mechanism that is the basis for all existing theories of drop breakup! The 
motion leading to breakup is obviously driven by the finite interfacial tension of the 
interface. However, this motion is clearly a consequence of capillary-pressure 
variations near the ends of the drop rather than the instability of infinitesimal 
disturbances in the drop shape. We first notice that the ends immediately become 
almost spherical after the flow has stopped, forming a dumbbell-like shape, while the 
overall length decreases. The ends then proceed to pinch off, leaving a cylindrical 
thread of fluid which relaxes rapidly while the newly formed ends bulb up. However, 
in this particular case, the new ends do not pinch off and the central thread relaxes to 
form a single spherical drop. Just  barely visible between each pair of drops is a tiny 
satellite drop. During the relaxation and breakup process exhibited in figure 6 ( b ) ,  
capillary waves are never visible on the central, cylindrical section. Although this is 
not true in general, as we shall see in 54.5, evidence of capillary-wave instability only 
appears for the most elongated drops that could be achieved in our four-roll mill 
while still maintaining the drop within the central region of homogeneous flow. 

Qualitatively, the behaviour observed in figure 6 ( b )  is typical of all fluid systems 
studied. We call the new breakup mechanism ‘end pinching’. It appears that  the final 
drop size distribution obtained via the ‘end-pinching ’ mechanism is determined by 
the rate a t  which the ends bulb up and contract toward the drop centre, relative to 
the rate a t  which the ends pinch off. Evidently, the interfacial-tension-induced flow 
responsible for ‘end pinching’ occurs on a much shorter timescale than the growth 
of capillary waves, a t  least for the particular case shown in figure 6. Theories of drop 
breakup and resulting predictions of drop size distributions based upon a capillary- 
wave instability mechanism will clearly not suffice in such circumstances. 

4.2. Effect of flow type 

Before considering the effect of varying the viscosity ratio on the dynamics of the 
elongation and ‘end-pinching’ processes, i t  is worthwhile to examine the effect of flow 
type. Bentley & Leal (1986b) have shown that a drop that passes through a series 
of quasi-steady states becomes oriented with its long axis along the exit streamline 
of the flow (figure 1) as the critical capillary number is approached. At this 
orientation, the effective strain rate of the fluid on the drop (i.e. the strain rate along 
its axis) is G, a;. 

Now, figure 7 illustrates the elongation and breakup process for h = 0.09 and two 
different flows, a = 0.6 and 0.2 respectively. The main difference, other than flow 
type, is that  the critical shear rate G‘, is approximately 1.5 times larger for the a = 0.2 
flow. Otherwise, the similarities are rather remarkable. As before, the drop undergoes 
a very slow initial elongation followed by a period of rapid extension prior to stopping 
the flow. Notice that the a = 0.6 drop was allowed to stretch further before the flow 
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FIQTJRE 7 .  The effect of flow type on the elongation process and on the subsequent relaxation and 
breakup phenomena. Viscosity ratio is held constant, h = 0.09, (a )  a = 0.6, G, = 0.224 s-'; ( b )  
a = 0.2, G, = 0.33 s-l. 

was stopped, which leads to more drop fragments being formed. The dynamics of the 
breakup process, though, are very similar for the two cases in spite of the fact that 
the final extended shapes are somewhat different. This suggests that  drop breakup 
in a quiescent fluid depends primarily on the global geometry (rather than on any 
local feature of the shape) and the basic shape of the elongated drops generated by 



Transient effects in drop breakup 

P 

8 

* 

143 

0 0 0 

0 10 20 30 40 50 
G, air 

FIQURE 8. The effect of flow type on the elongation process - elongation ratio L / a  as a function 
of dimensionless time G,ak This figure illustrates that the effect of flow type is only to modify the 
timescale of the elongation process. The data for each experiment ends when the flow is stopped : 
h = 0.09; 0 ,  a = 1.0; k, 0.8; A, 0.6; 0,  0.4; IJ, 0.2. 

these flows is very similar. The 'end-pinching' mechanism is observed and, in these 
cases, the process repeats itself on the middle thread. Since the shape of this thread, 
immediately after its formation, is different from the shape of the originally stretched 
drop, we again see that it is the overall elongated shape and not local details that 
dominates and is responsible for the 'end-pinching ' breakup process. 

Figure 8 illustrates the rate a t  which the elongation ratio L / a  varies with 
dimensionless time G,ait for the drops shown in figure 7 .  Additional data are also 
presented for the same h but different a. Here we focus attention on the rate of 
elongation as a function of flow type, for constant A. Hence, the data for each 
experiment ends when the flow is stopped. Because Gcai  is the effective extension 
rate along the exit streamline where the elongated drops align, i t  is a reasonable 
choice for scaling the time while the flow is on, and this is indicated by the agreement 
in the data of figure 8 for the various values of a. 

It should be noted that the very slow elongation process that characterizes the 
initial stage of transient deformation means that a small error in experimentally 
determining the critical capillary number makes a large difference in the origin of 
the time axis for each experiment. Consequently, all the plots of L / a  versus time in 
this paper have been adjusted so that the steeply sloping portions of the curves 
overlap. This adjustment affects the relative position of the curves, but has no effect 
on their shape. From figure 8 it is clear that the effect of flow type a is only to modify 
the timescale for elongation of the drop, at  least for the particular flow history that 
we examine in this paper. Hence, the photographs in figure 7 and the rate-of-elongation 
data presented in figure 8 demonstrate that the qualitative nature of the transient 
deformation and relaxation processes are essentially independent of flow type for a 
given value of G, a$. 
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FIGURE 9. The effect of viscosity ratio on the elongation and breakup phenomena. (a)  G, = 0.260 s-', 
@ , = 0 . 2 6 . ( b ) G c = 0 . 2 3 5 s ~ ' , ~ , = 0 . 2 1 . ( c ) G , = 0 . 1 8 7 s ~ 1 , @ c  =0 .18 . (d )G,=0 .135~- ' ,@,=0 .14 .  

4.3. Effect of viscosity rat io 

Figure 9 illustrates the elongation and breakup process for the entire range of 
viscosity ratios that we studied. Although the flow type is different for the various 
cases shown in figure 9, we have already demonstrated that a has no effect other than 
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FIQURE 10. Elongation ratio L / a  as a function of dimensionless time for the experiments shown 
in figure S ( b , c , d ) .  The data indicate the remarkable similarity in stretching rate for ( L / a )  2 3 
in spite of the 300-fold difference in viscosity ratio.*, h = 0.046, a = 1.0; A, h = 1.37, a = 0.4; 
0, h = 11.3, a = 0.6. 

determining the critical shear rate and hence the timescale for elongation. The 
differences apparent among the experiments shown in figure 9 are a consequence of 
changes in the viscosity ratio A. 

Figure 9 (a )  shows a sequence of photographs illustrating the transient behaviour 
of a drop with viscosity ratio 0.01. In low-viscosity-ratio experiments such as this 
one, the drop attains highly elongated steady shapes prior to achieving the critical 
shear rate where continuous elongation occurs, and the ends of the drop are much 
more pointed than we saw in either figures 6 or 7 .  During elongation with the flow 
on, the shape of the drop does not change dramatically. Except for a small region 
near the ends which remains almost pointed, the width of the elongating drop is 
nearly constant over its entire length at  any instant. When the flow is stopped, 
however, the ends rapidly become rounded, the overall length is reduced significantly, 
fluid drains from the centre and the drop breaks. Two daughter droplets are formed 
in the case illustrated here with a barely visible satellite drop between them. 

Two intermediate viscosity ratio cases h = 0.046 and 1.37 are shown in figure 9 ( b , c )  
respectively, and the qualitative behaviour is very similar to the cases h = 1.4 and 
0.09 examined in figures 6 and 7 respectively. In the present figures, the initial onset 
of stretching of the drop occurs a t  moderate deformations. In other words, the 
maximum steady deformation is relatively small in these cases, as already shown by 
Bentley & Leal (1986b). For both experiments, breakup is evidently a consequence 
of the ‘end-pinching ’ mechanism. 

Figure 9 ( d )  illustrates the drop behaviour for the highest viscosity ratio examined 
in this study, h = 11.3. The new qualitative, dynamical feature we observe is that 
the drop relaxes back to a spherical shape after the flow is stopped, even though it 
is highly elongated and the ends bulb up to produce a dumbbell-like shape. No 
pinching-off of the ends occurs. Instead, the ends are pulled toward the drop centre 
and engulf the cylindrical portion of the drop as they move. It is interesting that the 
diameter of the central portion of the drop remains essentially contant until the 
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separation between the drops ends is approximately equal to the end diameter. 
Again, capillary waves are not observed, 

Examination of the photographs in figure 9(b-d) illustrates that, despite the 
300-fold difference in viscosity ratio, the shapes of the intermediate and high- 
viscosity-ratio drops are remarkably similar while the drop is elongating in a steady 
flow a t  the critical capillary number. Furthermore, the rates of stretching of these 
different viscosity drops, following the slow initial deformation, are also remarkably 
similar. This is clearly evident in figure 10 which presents the elongation ratio L l a  
as a function of dimensionless time G, att for the experiments shown in figure 9 (bd). 
Data are only presented for the period while the flow is on, the results having been 
adjusted so that the steeply sloping portions of the curves overlap. As is evident in 
the photographs, however, the similarities in behaviour end after the flow stops. Not 
only does the high-viscosity-ratio drop not fragment, in spite of having a comparable 
initial Lla  and shape, as the intermediate viscosity ratio drops but, as is to be 
expected, the time period over which relaxation occurs is much longer the larger the 
viscosity ratio (when examining the relaxation process it is necessary to  remember 
that the time has been scaled with respect to  G, a$ and, for A 5 10, G, decreases with 
increasing A).  Because the degree of elongation in the three cases is similar, the 
differences observed for the high-h case are evidently due to the effects of viscosity 
ratio. 

With reference to  the lowest viscosity ratio, h = 0.01, if the drop is allowed to 
stretch further than shown in figure 9 ( a ) ,  we find that i t  also stretches a t  the same 
rate as the higher-viscosity-ratio drops shown in figure 10. However, the dynamics 
following cessation of the flow appear qualitatively different from the intermediate- 
and high-h experiments owing both to the lower viscosity ratio and the initial, 
pointed shape (which, of course, is also a consequence of the lower viscosity ratio). 
A qualitative explanation for the effect of viscosity ratio on the elongation/breakup 
process, as exhibited by these photographs, will be presented in $5.  

4.4. Effect of L la;  critical elongation necessary to ensure breakup once the flow is 
stopped 

We have yet to address specifically the question of how the initial degree of 
elongation affects the relaxation and breakup dynamics. First, we must reiterate that 
in no case did we observe breakup while the flow was on. Drop breakup, and, 
consequently, the final drop size distribution for a given viscosity ratio, were 
dependent on the elongation ratio Lla  prior to  stopping the flow. 

It should not be surprising, in the light of the photographs presented in this paper, 
that drops that were extended only a little past their steady shape relaxed back to 
a sphere without fragmenting over the entire range of viscosity ratios studied. In  
addition, in all cases there existed a critical elongation ratio above which the drop 
fragmented when the flow ceased. 

For each of the viscosity ratios studied, several experiments were performed to 
determine the critical elongation ratio for drop breakup. One way to  illustrate the 
results of varying the elongation ratio is to  examine data for L l a  as a function of 
dimensionless time. Such data are shown in figure 11 (a-c) for h = 0.018,0.4? and 5.7 
respectively, and for a range of final elongation ratios a t  the point when the flow is 
stopped. These plots are very similar to  figures 8 and 10. Here, however, we 
systematically vary Lla,  holding h constant, and observe the effect on the relaxa- 
tionlbreakup process and subsequent drop size distribution. For each experiment, we 
mark by a horizontal arrow, the point where the flow is stopped. Measurements of 
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FIGURE 1 1 .  The effect of L / a  on the relaxation and breakup process. (a) h = 0.018, ( b )  0.47, ( c )  5.7.  
The horizontal arrows indicate when the flow is stopped. Data points for each experiment then 
continue until the first fragment separates from the main drop. A / A ,  denotes the fractional increase 
in interfacial area due to the fragmentation. The solid, almost vertical line indicates the rate at 
which a fluid element stretches in the linear flow. 0, a = 1.0; 0, 0.8; *, 0.6; 0 ,  0.6. 

L/a then are continued until the first fragment separates from the main drop. The 
value of Lla at this instant is indicated by the last data point for each symbol. 
Although motion is driven by interfacial tension after the flow is stopped so that a 
more appropriate time scale is pa( 1 + A ) / c ,  for convenience, the timescale was not 
changed in this portion of the plot. In  each figure, data that returns to Lla = 1 
indicates that the drop relaxes back to a sphere without fragmenting. When breakup 
does occur, we also include a photograph of the final dispersed state of the drop after 
breakup and indicate the fractional increase in interfacial area, denoted by AIA,, 
that is generated by the fragmentation process (the bottom photograph in figure 1 l c  
shows the drop shortly before it fragments into two equally sized droplets). These 
figures reiterate some features that were exposed earlier by the photographs, namely 
that provided L/a is not too large, a considerable shortening of drop length occurs 
prior to fragmentation, and the relaxation is slower for higher viscosity ratios. 
Finally, the solid, almost vertical line in each figure illustrates the expected slope if 
the drop were to stretch at  the same rate as a fluid element in the linear flow. It is 
clear that as the drop becomes increasingly elongated this asymptotic behaviour is 
approached. 

These figures illustrate that for small enough L/a the drop relaxes back to a sphere. 
However, above a critical elongation ratio the drop breaks and the number of drop 
fragments (and hence interfacial area) increases with increasing L/a beyond this 
critical value. 

For all viscosity ratios, the critical elongation ratio necessary to guarantee drop 
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FIGURE 12. Critical elongation ratio necessary to ensure breakup, following an abrupt halt of the 
flow, as a function of viscosity ratio. Triangles denote the smallest L/a  for which a drop was 
observed to breakup. Squares denote the largest Lla for which a drop relaxed back to a sphere. 
The shaded region denotes the uncertainty in the critical elongation ratio. The dashed line indicates 
the Lla  values of the final steady shapes. 

breakup for the flow history that we examined is summarized in figure 12. The 
squares denote the largest elongation ratio for which the drop relaxed back to a 
sphere and the triangles denote the smallest elongation ratio for which breakup was 
observed upon cessation of the flow. The cross-hatched region therefore denotes the 
uncertainty in the magnitude of the critical elongation ratio. The dotted line in this 
figure represents L / a  for the most deformed steady shapes that were observed 
experimentally by Bentley & Leal (1986b). Examination of the unsteady elongation 
and breakup for h x lop3 has been very difficult because the steady shapes are very 
long and slender. The data in figure 12 illustrate, as found by Grace (1971), that  the 
critical elongation necessary to  ensure breakup is large compared with the maximum 
stable shape. 

Figure 12 also clearly illustrates a difficulty in breaking drops with either a high 
or low viscosity ratio. As shown by the photographs in figure 9, high-h drops are able 
to relax back to a spherical shape before either capillary-wave instabilities on the 
central cylindrical portion or the dynamics of 'end pinching ' cause fragmentation. 
On the other hand, low-viscosity-ratio drops are difficult to break primarily because 
a high degree of elongation (and a high capillary number) is necessary before the drop 
even begins to  elongate with time in a steady flow. 

The graph exhibits a minimum in the critical L / a  in the range 0.1 5 h 5 2.0 and 
this is qualitatively similar to  results reported by Grace (1971) for hyperbolic flow. 
A quantitative comparison is difficult, however, because Grace reported all results 
in terms of D, which is very insensitive to increased extension for the highly 
elongated drops formed in these experiments. As discussed above, our results hold 
for all a. 
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4.5. Capillary waves 
In  ss4.1, 4.3 and 4.4 we have noted that capillary-wave instability is not observed 
during the elongation of drops in the present experiments. Furthermore, there is a t  
least a range of elongation ratios where the drop is highly elongated but the breakup 
mode, in the absence of any external flow, is due to ‘end pinch-off’ and not due to 
the growth of capillary waves. Both of these results are surprising in view of the 
previous work on the drop breakup problem and deserve further discussion and 
investigation. 

First, we consider the fact that  no capillary waves are observed during the 
elongation of the drop, even though the midsection of the drop becomes long and 
cylindrical and L l a  values as large O( 15) are attained. Mikami et al. (1975) published 
a theoretical stability analysis for an inJinite fluid cylinder in a second fluid that is 
undergoing an axisymmetric extension. The theory shows that the fluid cylinder 
behaves exactly as a fluid element in this flow and we have already seen that this 
asymptotic behaviour is approached as the drop elongates during the experiment. 
In  general, though, the theoretical results are quite complicated with the net effect 
being that the elongation of the thread decreases the overall growth rate of capillary 
waves. Nevertheless, some disturbances are still predicted to grow exponentially and 
this suggests that  breakup is possible via capillary-wave growth even when the drop 
is extending. I n  addition, Mikami et al. (1975) demonstrate that the predictions of 
the linear stability analysis are valid for the two-dimensional extensional flow 
generated in the four-roll mill. Indeed, these investigators report experimental 
observations that qualitatively support their analysis and show breakup of a fluid 
thread in a steady two-dimensional hyperbolic flow. The main difference between 
their experiment and ours is that they achieved much greater elongation ratios than 
the maximum values of O(15) that  we obtained in our experiments. Presumably, a 
drop must become much more elongated before capillary-wave instabilities become 
evident during its extension, but this could not be tested in our apparatus because 
of constraints imposed by the size of the linear flow region and by resolution limits 
of the video camera in the control system. 

When the flow is turned off after the drop has been highly extended, the midsection 
would appear, even with the ends being shed via ‘end pinching’ to approximate a 
stationary liquid cylinder. The stability of an infinite, stationary fluid cylinder in 
a second viscous fluid was studied by Tomotika (1935), Rumscheidt & Mason (1961), 
Lee & Flumerfelt (1981) and Lee et al. (1981). As demonstrated by Tomotika, 
although an infinite fluid cylinder suspended in a quiescent fluid is a perfectly valid 
solution to the governing equations, u = 0 everywhere, i t  is unstable with respect to 
small disturbances with wavelength greater than the cylinder circumference. Crudely, 
then, capillary-wave instability cannot occur on elongated drops unless the length 
is greater than the circumference. However, for longer drops, capillary-wave growth 
should be expected. The fact that  we see no evidence of capillary waves in the 
majority of our experiments, even when the initial length of the extended drop is 
several times its circumference, is probably because the ‘ end-pinching ’ process 
occurs on a short timescale relative to the time required for small capillary-wave 
disturbances to achieve finite amplitude. Thus, the drop is reduced to a length that 
can no longer support capillary-wave growth before significant growth of the initial 
disturbances can occur. However, this ‘explanation ’ suggests that  capillary waves 
should eventually become evident if we simply make the drop long enough - for such 
a long drop, breakup will occur initially via the ‘end-pinching ’ mechanism, but now 
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theory 0.57 0.55 0.39 
exp. 0.58 0.57 0.50 

TABLE 1. Comparison of experiment and theory for the instability of infinite, stationary liquid 
cylinders. A denotes the disturbance wavelength and R, the thread radius. The theoretical pre- 
dictions are obtained in the limit of negligible inertial effects, pua/,u2 < 1, p^u.a/ti2 4 1 (Lee & 
Flumerfelt 1981). 

capillary waves may appear on the remaining elongated thread simply because the 
drop was so long initially that the timescale for its complete breakup via ‘end 
pinching’ exceeds the timescale for growth of capillary waves. 

Based upon these ideas, we set out to search for evidence of capillary-wave growth 
by simply producing increasingly elongated drops. The results of this search confirm 
our qualitative explanation. Several examples of cases that show significant capillary- 
wave growth are shown in figure 13. In  these cases, the presence of capillary-wave 
instability produces a striking and abrupt transition in the mode of breakup in the 
middle of the breakup process. At first, the drop begins to breakup via the 
‘ end-pinching ’ mechanism which we identified earlier in this paper. Then, however, 
there is an abrupt appearance of finite-amplitude waves on the remaining thread, 
which leads to simultaneous breakup into a line of small drops. The fact that this 
latter process is due to capillary-wave instability is confirmed by the comparison, 
shown in table 1, between the wavelength ( A )  obtained from the experiments and 
the wavelength of the fastest-growing linear mode calculated from the linear stability 
theory in the limit of negligible inertial effects, paR,/,u2, buR,/,k2 4 1, where R, is 
the thread radius. Experimentally, paR,/,u2 x The agreement is excellent for 
h = 0.1 and 1.3. The discrepancy for h = 12.2 may be because there is a relatively 
strong flow induced in the fluid by the initial contraction in length which occurs to 
a much greater extent for drops with a large viscosity ratio. Of course in the 
capillary-wave theory, an infinite, stationary thread is assumed and it is perhaps 
surprising that there is good agreement between the theory and experimental data 
for an elongated drop in any case. 

5.  Discussion 
Of all the experimental observations described in the preceding section, the most 

important, and interesting, is the identification of the mode of interfacial-tension- 
driven breakup that we have termed ‘end pinching’. Qualitatively, it  is clear that 
the mechanism is a consequence of motion generated via capillary pressure gradients 
in the region near the end of the drop. An obvious question, though, is why drops 
of intermediate viscosity ratio break via this mechanism when they are only 
modestly extended, while more-viscous drops do not break until L/a  is considerably 
larger. From our observations, it  can be seen that a general precursor to ‘pinch-off’ 
is the development of a local ‘waist’ just inside the bulbous end. Once such a local 
minimum in the radius occurs, there will be an associated local pressure maximum 
inside the drop due to capillary forces and an obvious mechanism for increase in the 
depth of the minimum, subsequently leading to pinch-off. However, this simple 
observation does not explain why the local minimum in radius occurs in the first 
place, nor why it occurs less readily for drops of large viscosity ratio compared with 
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Distance along drop axis 

FIGURE 14. (a) Typical drop shape shortly after the flow is stopped. Radius of bulbous end is twice 
the radius of the cylindrical midsection. (b) Approximate normal stress jump across the interface. 

h = O(1). This latter question is particularly perplexing in view of the similar drop 
shapes in the initial stages of the relaxation/breakup process. 

5.1. A qualitative description of ‘end  pinching ’ 

A starting point in attempting to understand ‘pinch-off’ is the recognition, from 
dimensional analysis, that the qualitative, features of the interfacial-tension-driven 
flow are determined completely by the viscosity ratio and the initial shape of the 
drop, including the value of Lla.  One might, at first, suppose that the differences 
between the relaxation/breakup process for drops of intermediate and large viscosity 
ratio are a result of some viscosity-ratio-dependent detail of the drop shape at the 
instant when the external flow is stopped. However, this appears unlikely for several 
reasons. First, when ‘end pinching’ occurs, it does so for any elongation ratio greater 
than some minimum value even though the initial drop shape (as described, say, by 
the ratio of the radius of the bulbous end to the radius of the cylindrical midsection) 
varies with Lla.  Secondly, the initial shapes for small and intermediate A are 
markedly different in the region near the end of the drop and yet ‘end pinching’ 
occurs in both cases. Finally, when ‘end pinching’ initially takes place, it  often leaves 
an elongated central fragment which develops bulbous ends and may pinch-off in the 
same manner in spite of the fact that its shape is clearly different from the original 
extended shape. Hence, it would appear that the mechanism of ‘end pinching’ 
depends on the global geometry of the drop (and viscosity ratio), rather than on any 
local details of the shape. This was indicated previously in the discussion of figure 7 .  

A more-plausible suggestion is that the difference between moderate- and high- 
viscosity-ratio systems is due to differences in the relative rates of the flow in different 
regions of the drop which arise from the relative viscosities of the drop and 
continuous phases. In order to develop this concept, it is necessary to begin with a 
general description of the relaxation process. Let us begin by considering the internal 
pressure distribution associated with capillary forces for an interface of the shape 
shown in figure 14(a), which is qualitatively typical of the observed drop shapes in 
all cases soon after the flow is stopped. For illustration purposes, we have chosen the 

6-2 
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radius of the bulbous end to be twice the radius of the cylindrical midsection. Let 
us denote the stress tensor as T and the unit normal from the droplet phase to the 
continuous phase as n.  Then, if the drop surface is described in cylindrical coordinates 
as r = f(x), the normal stress jump is given by 

where R, and R, are the principal radii of curvature of the surface, and f’ and f ”  are 
the derivatives of the shape function f ,  with respect to the axial coordinate x. The 
normal str,ess jump corresponding to  the shape plotted in figure 14(a) is depicted 
qualitatively in figure 14(b). Now, let us suppose that the shape is fixed, so that the 
normal stress jump can be interpreted in terms of capillary-pressure variations 
within the drop. Then, we see that the pressure is highest near the end of the drop 
where the radius of curvature is concave in planes both parallel and perpendicular 
to  the drop axis, goes through a minimum with decreasing x because the drop surface 
in the plane parallel to the drop axis becomes convex, and finally increases to a 
constant value in the central portion of the drop. 

This capillary pressure gradient will tend to induce flow both from the end of the 
drop and from the central cylindrical region. However, the flow from the end of the 
drop can occur without large velocity gradients in the internal fluid, since the drop 
end can translate without a significant change in shape. Thus, this motion is resisted 
mainly by viscous effects in the outer fluid. Motion of the bulbous end towards the 
pressure minimum causes the convex region (and hence the pressure minimum) to 
move toward the drop centre as well, so that the driving force for continued end 
movement is maintained. On the other hand, the dynamics of the flow from the 
central portion of the drop towards the pressure minimum is qualitatively different, 
because this flow requires significant velocity gradients within the inner fluid (note 
that the fluid is stagnant at the drop centre). As a consequence, this motion is 
inhibited primarily by the droplet viscosity. It will be noted, however, that  a local 
‘neck’ in the shape will tend to  form as a consequence of a flux of fluid from the 
cylindrical region towards the pressure minimum. 

Given this qualitative picture of interfacial-tension-driven changes in the drop 
shape, the observed differences between high- and low-viscosity-ratio systems may be 
‘explained’ in the following manner. I n  high-viscosity-ratio systems, the ends are 
drawn toward the middle as described above, with the rate of this process controlled 
mainly by the relatively low-viscosity outer fluid. Drainage from the central portion, 
on the other hand, is comparatively slow since it is controlled by the higher-viscosity 
droplet fluid. As a result, movement of the pressure minimum and of the bulbous ends 
occurs sufficiently fast relative to  the flow from the central region that a significant 
‘neck’ in the shape cannot form unless the drop is highly elongated. I n  contrast, in 
lower-viscosity-ratio systems, fluid flows readily from the central region towards the 
pressure minimum (and the relative motion of the bulbous end is slower) causing a 
local minimum in the drop radius. The ends ‘ pinch-off’ owing to  flow away from the 
corresponding maximum in capillary pressure, which causes the ‘neck ’ to become 
more pronounced and eventually ‘pinch’. Notice that the higher curvature a t  the 
ends of very low-viscosity-ratio drops should lead to a rapid bulbing of the ends (i.e. 
high velocities near the end of the drop) followed by the pinching process just 
discussed. This is seen clearly for h = 0.01 in figure 9(a ) .  
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5.2. Numerical solution of the motion of an elongated drop via the boundary-integral 
method 

In order to test the qualitative description presented above and to understand more 
about the dependence of the dynamics on the initial shape and viscosity ratio, a 
numerical study of the interfacial-tension-driven motion of an elongated drop in a 
quiescent fluid is currently in progress using a boundary-integral method. Here we 
present calculations for the case h = 1 only in order to show that the numerical 
simulation agrees with the description of the physics presented in 55.1. 

The boundary-integral method has been applied to the low-Reynolds-number 
deformation of bubbles and drops in an external flow by Youngren & Acrivos (1976), 
Rallison & Acrivos (1978) and Rallison (1981). The technique is well suited to 
free-boundary problems since the interfacial velocities may be obtained directly, 
without the necessity of determining the velocity field in the entire flow domain. 

Our  overall objective is the examination of the dynamics of an initially extended 
liquid droplet that is suspended in a second immiscible fluid which is a t  rest at  
infinity. Inertial effects are negligible with respect to viscous effects provided 
pal,/pa( 1 + A )  < 1, where I ,  is some characteristic lengthscale of the deformed drop. 
As discussed specifically by Rallison & Acrivos (1978), for the special case A = 1 ,  the 
velocity field, non-dimensionalized with respect to g / p (  1 + A ) ,  a t  any point, x in the 
fluid domain, is given by 

where S represents the drop surface. Here, n is the unit outward normal from the 
drop surface and V;n is the surface curvature. Thus, for the case when the drop and 
suspending fluids have the same viscosity, the velocity field may be thought of as 
generated by a ‘membrane of Stokeslets distributed along the interface’ with a 
density proportional to the local curvature. If we wish to follow the interface motion, 
(3) is used in conjunction with the kinematic condition, which may be stated sym- 
bolically as dS/dt = u-n  for XES (time has been non-dimensionalized with respect 
to Z,p( 1 + A ) / g ) .  As is evident from (3), the evolution of the drop shape is completely 
dependent on the initial drop geometry and the only role interfacial tension plays 
is to determine the characteristic velocity scale and, hence, the timescale of the 
relaxation/breakup process. 

In this short discussion, we aim to demonstrate that the drop shape evolves in a 
manner representative of the ‘end-pinching ’ phenomena and then examine the 
interior velocity field to see whether the behaviour is qualitatively consistent with 
the proposal of the preceding section. The details of the numerics and more- 
comprehensive results will be reported in a future communication. Here we simply 
note that the numerical scheme incorporates methods used for similar free-boundary 
problems by Rallison & Acrivos (1978), Lee & Leal (1982), Geller, Lee & Leal (1986), 
and E. J. Hinch et al. (private communication). In  the calculation reported below : 
the interface was subdivided into 24 elements; the interface shape was approximated 
by fitting a cubic spline to the collocation points; every few iterations the collocation 
points were evenly redistributed (based on arclength) along the interface ; all 
integrals were evaluated using a Gauss quadrature scheme; and the drop volume, 
monitored as time progressed, was found to change by less than 1 yo over several 
hundred iterations. 

Figure 15 (a )  represents the time evolution of a typical drop shape, with an initial 
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FIGURE 15. (a) Time evolution of an initially elongated drop suspended in an otherwise quiescent 
fluid, t' = l,,tL(l +h)/a,  where 1, is chosen as the initial radius at the centre of the drop and h = 1. 
(b )  The velocity field in the drop for the initial shape shown in (a) .  

elongation ratio L/a  = 5.3,  and an initial shape that can be approximated as a 
cylindrical midsection with a spherical end, the ratio of bulb to cylinder radius being 
3:  1 .  We have chosen the local radius as the characteristic lengthscale and t* is the 
dimensionless time that identifies evolution of the drop shape. We observe that the 
bulbous end translates towards the drop centre, a 'neck' slowly develops, and then 
the bulbous end rapidly begins to pinch-off. The evolution is very similar qualitatively 
to the many photographs presented above for A = O(1).  In order to accurately 
describe the details of the pinch process, more points would have to be distributed 
along the interface to resolve the regions of high curvature. However, our goal is 
primarily to show that the elongated drop does undergo an ' end-pinching ' process 
and that the interior velocity field is qualitatively consistent with the mechanism 
suggested in $5.1. For the latter purpose, it is sufficient to examine the initial velocity 
field at t = O+ when the surface resolution is more than adequate. These results are 
shown in figure 15(b ) .  We see that the end induces a strong, almost uniform flow 
toward the drop centre. Furthermore, there is indeed a flow, albeit weak, from the 
cylindrical region towards the pressure minimum, as was suggested in the qualitative 
discussion in $5.1. It is this initial flux that leads to the development of a 'neck' and, 
consequently, a local pressure maximum, which will eventually result in drop 
fragmentation via 'end pinching' as depicted in figure 15 (a) .  Hence, this example 
lends support to the qualitative explanation that we have presented to describe the 
relaxation/breakup process. 

This work was supported by a grant from the Fluid Mechanics Program of the 
National Science Foundation. 
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